Selective antagonism of calcium channel activators by fluspirilene.

Article Details

Citation

Kenny BA, Fraser S, Kilpatrick AT, Spedding M

Selective antagonism of calcium channel activators by fluspirilene.

Br J Pharmacol. 1990 Jun;100(2):211-6.

PubMed ID
1696149 [ View in PubMed
]
Abstract

1. Fluspirilene has been claimed to bind to a high affinity site in the calcium channel in skeletal muscle. We have investigated its calcium-antagonistic effects in smooth muscle and affinity for the channel in radioligand binding assays. 2. Fluspirilene was weakly active as an antagonist of Ca2(+)-induced contractions in K(+)-depolarized taenia preparations from the guinea-pig caecum, with threshold antagonism starting from concentrations of 30 nM. Nitrendipine, nicardipine and nimodipine were very potent antagonists in this model (threshold antagonism, greater than 1 nM). 3. In contrast, fluspirilene (10-1000 nM) was a potent non-competitive antagonist of the effects of Bay K 8644 (1-3000 nM) on Ca2(+)-induced contractions and, at 10 nM, selectively antagonised the effects of Bay K 8644, abolished the Ca2(+)-channel activator effects of CGP 28392, without changing the calcium antagonist effects of nitrendipine, or modifying the sensitivity of the tissues to Ca2+. In contrast, the dihydropyridines were more effective as antagonists of Ca2+ than of Bay K 8644. Fluspirilene therefore selectively antagonised the effects of dihydropyridine Ca2+ channel activators without affecting the antagonist potency. 4. In radioligand binding experiments, fluspirilene was a potent displacer of [3H]-PN-200-110 binding to rat cerebral cortical membranes (EC50 30 nM), albeit with a low Hill slope (0.66), and was more potent than other lipophilic diphenylalkylamines such as flunarizine and lidoflazine. Fluspirilene interacted non-competitively with [3H]-PN-200-110 and increased dissociation of the radioligand.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
FluspirileneVoltage-dependent calcium channel gamma-1 subunitProteinHumans
Unknown
Inhibitor
Details